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1. INTRODUCTION 3 -_ 

Gringorten (1971) obtained an estimate of the conditional 
probability of an event through use of the bivariate normal 

frequencies and persistence of the event. The assumption 
that the process is Markov is considered valid, and the 

is a category, such as an overcast sky, all temperatures 

initial time, however, an event such as the temperature is 

In a recent report on modeling conditional probability, - 
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distribution, which is based on the unconditional climatic - 
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W estimates should be effective. However, usefulness of the 
method is curtailed by the fact that the initial condition 

less than 32OF, or 24-hr rainfall exceeding 0.1 in. At any 

known specifically as, for example, 15OF. Its  classification 
into a category of all instances of temperature equal to or 
less than 32°F results in loss of information. It is possible 
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to use the specific information of initial state to yield a 
sharper conditional probability than that for the categor- 
ized initial state. Surprisingly, the solution proposed in 
this paper is simpler than the previous solution. 
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Conditional Probability for an Exact, 
Noncategorized Initial Condition 
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ABSTRACT-Previous models for estimating the conditional 
probability of an event have used, as the condition, an 
initial categorized event such as no rain or overcast a t  
time zero. But initial conditions frequently are observed 
and known in greater detail, and these observed values can 

replace the categories in determining conditional proba- 
bilities. A model that  has as its underlying assumption 
the “Omstein-Uhlenbeck” process is applicable to  this 
problem. It uses the antecedent quantitatively without 
loss of information and with surprising simplicity. 
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2. MODELING FOR A SPECIFIC INITIAL VALUE 

The cumulative frequency distribution of a meteoro- 
logical element, T, can be plotted on normal probability 
paper, which immediately places T in a one-to-one 
correspondence with the normalized value, y, that has 
zero mean, 1.0 variance, and a Gaussian distribution 
(fig. 1). Such a transformation will yield yo to correspond 
to the initial value, To, and yr to  correspond to the later 
value, T, .  

As in a previous paper (Gringorten 1968), we assume a 
stochastic process to  relate y, to  the earlier value, yo, as 
folloms : 

Yr=PYof  m t l t  (1) 

where p is the correlation coefficient between yo and yr  
separated by the time interval t (hr) and o r  is a random 
normal number. The process is Markov if 

P=P: (2) 
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FIGURE 1.-Example of a variable, temperature (T), plotted against 
its cumulative frequency to give a one-to-one transformation of T 
into the normalized variable, ?J (0,l). The example is for July 
midnight temperature a t  Minneapolis, Minn. 

where po is the hour-to-hour correlation. If po is kept 
constant, the process is also stationary and becomes the 
Markov process that is known as the “Ornstein- 
Uhlenbeck” process (Kendall and Buckland 1957). 

It is clear from eq (1) that, for a specific value of yo, the 
value of q r  mill exceed a minimum, ?lo as frequently as y t  
exceeds an assigned minimum, yc. Or, where P denotes 
probability, 

P(T, 2%) =P(Yt 2! /c lYo) .  

Hence, q r  can be denoted as y(tlO), the normalized value 
corresponding to the conditional probability of yI. Thus, 

796 1 Vol. 100, No. 11 I Monthly Weather Review 



eq (1) can be rewritten as 

This equation is comparable in all respects with eq (21) 
of the previous paper (Gringorten 1971), except that the 
initial condition, yo, must be a specific value, not a category 
of values (ie., >yo). Whereas, in the previous model, the 
parameters X and p are made functions of the initial value, 
yo, and persistence is given as p ,  the values yo and p enter 
directly into eq (3), permitting a direct and simple calcu- 
lation of y(tl0). Once y(tl0) is obtained, a table of the 
normal probability integral (found in almost any text in 
statistics) will provide P(y ,  >ylyo) corresponding to 
Y =Y (tl0). 

(3) 

TABLE I.-The conditional probability, P(T,ITo), of the later tem- 
perature, T,, given the specijic initial temperature, To, at midnight 
for Minneapolis, Minn . ,  in Ju ly .  The  later temperature i s  the 2 
percentile for the hour (P=O.02+yt=2.O5). The hour-to-hour 
correlation i s  assumed to be 0.977. 

3. TEST AND APPLICATION 

July Temperatures at Minneapolis, Minnesota 

The hour-to-hour correlation had previously been set 
at  p0=0.977. From eq (2), the correlations, or persistence 
factors, between observations 3 hr apart and 15 hr apart 
become, respectively, p=0.933 and 0.705. From a 10-yr 
sample (1943-52) , the upper 2-percent temperatures a t  
midnight, 0300, and 1500 CST were reported as 81°, 78O, 
and 97'F, respectively. For the temperature at  midnight 
initially equal to  or higher than 81°F, the conditional 
frequencies of the 0300 and 1500 CST 2 percentiles (from 
a sample of only six cases in 10 yr) were found, by graphical 
interpolation, to be 0.50 and 0.42, respectively. 

To use eq (3) , we must represent the upper 2 percentile 
of the latter event by 

y,=2.05. 

If the initial temperature is set successively a t  

TO=8lo, 82", 83", 84", and 85"F, 

for which the climatic frequencies are 

P0=0.02, 0.010, 0.0055, 0.0033, and 0.0020, 

then, from normal probability tables, 

y0=2.05, 2.33, 2.54, 2.72, and 2.88. 

(These values are also obtainable from the left-hand scale 
of fig. 1.) 

Placing p ,  yo, and y, in eq (3) gives y(tlO), with which one 
can determine P( T,I To) from the normal probability 
tables (table 1). The temperature at  the early hour of 0300 
CST will equal or exceed 78°F with 35-percent probability 
if initially, at  midnight, it is 81"F, with 63-percent prob- 
ability if initially it is 82°F) and with 96-percent prob- 
ability if initially it is 85°F. The afternoon temperature, 
15 hr after midnight, will equal or exceed 97°F with 20- 
percent probability when initially it is 81°F, with 28-per- 
cent probability when initially it is 82"F, and so on. Table 

Later event (P1=0.02) 
Initial midnight - 

temperature Time Tt o300 CST 1600 CST > 78'F >9ioB 

(OF) 

81 0. 02  2. 05 0. 38 0. 35 0. 85 0. 20 
82 . 010 2. 33 -. 34 . 63 . 57 . 2 8  
83 . 0055 2 . 1 4  -. 88 . 81 . 36 . 3 6  
84 . 0033 2. 72 -1.35 . 9 1  . 19 . 4 2  
85 . 0020 2. 88 -1.76 . 9 6  . 0 3  . 4 9  

281 
1943-52 samples results 

(0. 50) (0. 42) 

TABLE 2.-The conditional probability, P(X,IXo), of cloud cover 
equaled or exceeded at d l 0 0  CST following the spesi$c cloud cover 
(nearest tenth) 12 hr earlier at 0900 CST at Minneapolis, Minn . ,  in 
January .  The  climatic frequencies, Po and P,, are based on 1943-52 
data. The  hour-to-hour correlation i s  assumed to be 0.955. 

Later cloud cover at 2100 CST (Xt) 
21/10 25/10 Overcast 

Imtially at OLJOO CST 
Pt 0.66 0.51 0.36 
ut -.41 -.03 .36 

Clear sky 
1.00 

Use 0.945 -1.60 

From W y r  sample 
(0.48) (0.19) (0.07) 
.37 .22 .12 

1/10 
2/10 
3/10 
4/10 
5/10 
6/10 
7/10 
8/10 
9/10 

0.89 -1.23 
.78 -0.77 
.74 -.64 
.72 -.58 
.69 -.50 
.66 -.41 
.G4 -.36 
.62 -.31 
.57 -.18 

0.44 0.28 0.15 
.63 .36 .21 
.56 .39 .24 
.57 .40 .25 
.58 .41 .26 
.60 .43 .27 
.61 .44 .28 
.62 .45 .29 
.64 .48 .31 

Overcast 0.45 From 10-yr sample 
(0.77) (0.66) (0.53) 

Use 0.225 0.76 .80 .66 .49 

1 is merely a sample of results of the application of eq (2) 
and (3). 

January Cloud Cover at Minneapolis, Minnesota 

Suppose the cloud cover a t  0900 CST is given to the 
nearest tenth (Gringorten 1971, table 6 ) .  If the hour-to- 
hour correlation is again assumed to be 0.935, together 
with the known frequencies, Po and P,, then, after finding 
the corresponding yo and y I from normal probability tables 
and using eq (3), the conditional probabilities of later cloud 
cover at  2100 CST become as shown in table 2. The prob- 
ability estimate of the evening sky cover increases mono- 
tonically with the amount of the initial morning sky cover. 

The only sample figures that might be usable for com- 
parison with the estimates of table 2 are for cloud cover 
following an overcast or a clear sky. Since overcast is a 
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TABLE 3.-The conditional probability, P(R,(Ro), of rainfall, R,, 
equaled or exceeded on second day following the specijic rainfall 
amount, Rot (in.) on  the $Tst day at Boston, Mass., in January.  
Day-to-day correlation i s  assumed to be 0.21. 

Second day rainfall (Rt) 
>T 20.01 20 .1  2 0 . 6  2 1 . 0  

Ro po-+vo yI -.13 .31 .74 1.22 2.05 

First day initial rainfall 
Pt 0.55 0.38 0.23 0.11 0.02 

No rain From 18yr sample 

Usa 0.775 4 . 7 5  .49 .32 .18 .08 .01 
(0.49) (0.35) (0.22) (0.11) (0.02) 

T 0.55 -0.13 0. 54 0.37 0.19 0. 10 0.02 
0.01 .38 . 31  .58 .40 .25 .12 .02 
0.1 .23 .74 .61 .44 .27 .14 .03 
0.5 . l l  1.22 ,645 .48 .31 .16 .03 
1.0 .02 2.05 .72 .55 .37 .21 .05 

category with 0.45 climatic frequency, a single value of yo 
cannot be assigned to it. But, if the value of yo is selected 
to  correspond to one-half its frequency (making y0=0.76 
for P0=0.225) , the estimates of conditional probability for 
cloud cover 2 1/10, 25/10,  and overcast are in reasonably 
good agreement with the sample conditional frequencies. 
If, for an initial category of clear sky, we make y= - 1.60 
correspond to P=l -~ (0 .11 )=0 .945 ,  the results are 
somewhat less encouraging. 

January 24-Hour Rainfall 
in Boston, Massachusetts 

To use eq (2) and (3) on the Boston, Mass., rainfall in 
January (Gringorten 1971, table 11) on the conditional 
probability 1 day ahead, we assume p0=0.21 and set t = l  
(day). Then for rainfall on the first day equal to  trace, 
0.01 in., 0.1 in., 0.5 in., and 1.0 in., for which climatic 
frequencies are 0.55, 0.38, 0.23, 0.1 1,  0.02, respectively, 
the estimates of conditional probability of rain on the 
second day are shown in table 3. For the initial event of 
no rain, which has climatic frequency 0.45, Po is set at  
0.55+ x(0.45) =0.775 for which yo= -0.75. The result- 
ing estimates of conditional probabilities are shown for 
comparison with the 18-yr sample conditional frequencies 
(in parentheses). 

As in the previous examples, table 3 offers only a limited 
comparison with sampling results. It is reasonable to  com- 
pare, by sample and by model, the two no-rain probabil- 
ities that are estimates. But, to  satisfactorily verify the 
model’s probability estimate of rainfall exceeding 0.01 in. 

or, worse, l.O-in., following the measured amount of rain- 
fall of the previous day, one would need a prohibitively 
long historical record. 

4. CONCLUSIONS 

Equation (3), supplemented by eq (2), is a valid and 
practical model for the estimate of conditional probability 
when the initial event can be given as a single, well-defined 
value. For an initial category like overcast or no rain, the 
model is, strictly speaking, not applicable. However, by 
arbitrarily assigning a probability, Po, equal to one-half 
of the climatic frequency, to the initial event and inserting 
the corresponding normalized variable, yo, in eq (3), the 
resulting estimate of conditional probability appears gen- 
erally acceptable, thus obviating the need for a more 
elaborate procedure. 

Clearly, the specific initial event, such as temperature 
to the nearest l”F, cloud cover to the nearest tenth, or 
rainfall to the nearest 0.01 in., makes considerable differ- 
ence on the conditional probability of the later threshold 
value. Testing this result on actual data, however, is 
difficult because the data sample is quickly fragmented 
by selecting a single initial temperature to the nearest 
1°F, cloud cover to the nearest tenth, or rainfall to the 
nearest 0.01 in. Confidence in this model must be built 
upon the effectiveness of the underlying assumptions. The 
latter were tested in the previous work (Gringorten 1971) 
where larger, unfragmented samples were used for veri- 
fication. 

The model of eq (3) presumes a prior knowledge of 
persistence measured as p ,  as well as the basic climatic 
frequencies. To find the best values of p ,  we must use the 
archived data in a reversal of the problem treated in this 
paper and the previous paper (Gringorten 1971). But, 
because of the limitations of the data records, the per- 
sistence factor, p ,  should be obtained from a treatment of 
the data in adequately large categories, using the model 
of the bivariate normal distribution, as in the previous 
paper. 
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